

Lessons from Sustained Exercise Programs in CKD

João Viana, PhD

Research Center in Sports Sciences, Health Sciences and Human Development
University of Maia
Portugal

- 3-months pilot project in a single unit
- NC Portugal Executive and Medical boards supported expansion
- National exercise program coordinator
- Local exercise program coordinators (dialysis staff)
- MSc internship programme (exercise science students)

Exercise training protocol

AEROBIC EXERCISE TRAINING

Borg Scale Perception Rating of exertion No exertion 6 10 Light 11 12 Somewhat hard 13 14 Hard (heavy) 15 16 17 Very hard 18 19 **Maximal exertion**

20

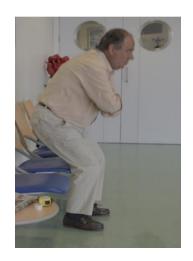
Warm Up: 5 min

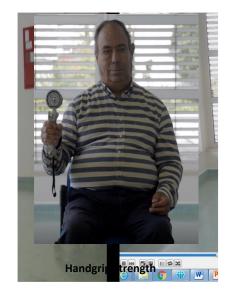
Conditioning: up to 60 min (50-70 rpm)

Cool Down: 5 min

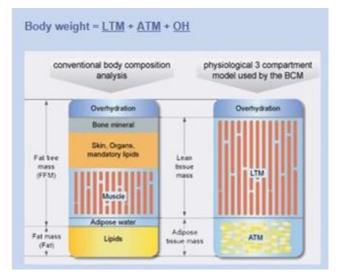
Exercise training protocol

RESISTANCE EXERCISE TRAINING




1-4 sets; 12 repetitions

Assessments – physical function

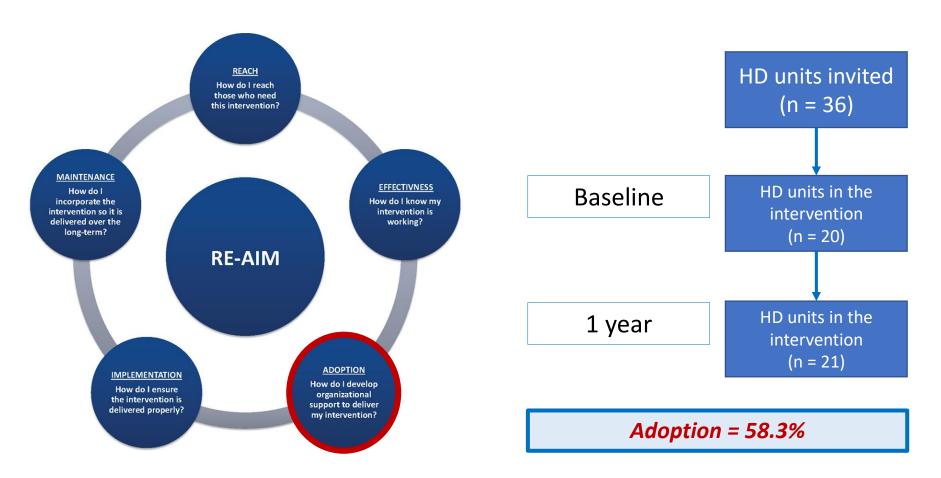

STS 5 & STS 30

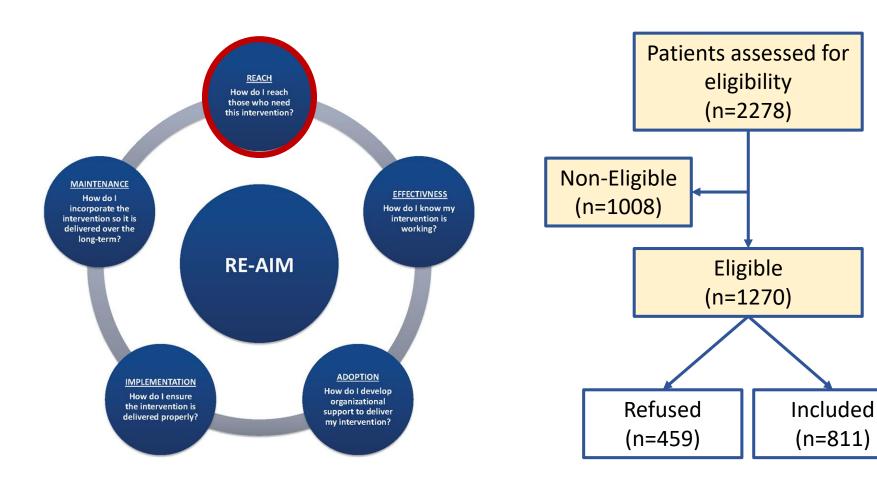
8-foot Up and Go

Single Leg Stance

Assessments – body composition

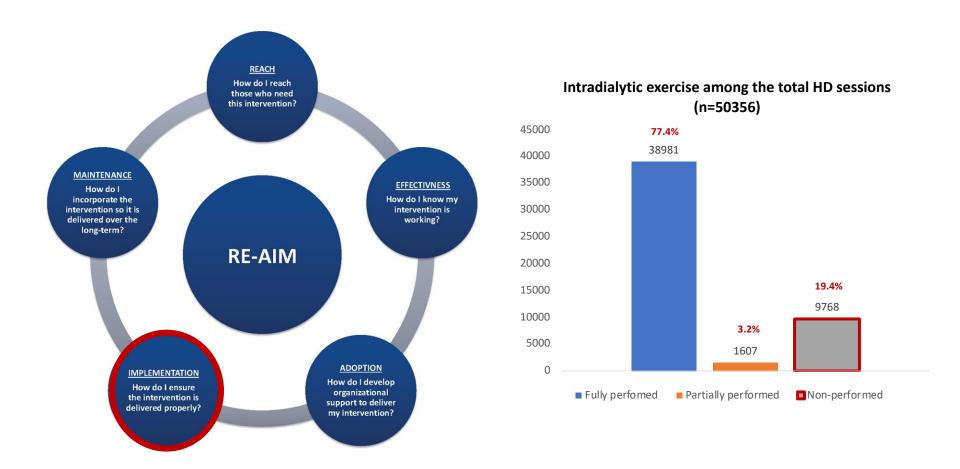
Intradialytic exercise in hemodialysis patients: from clinical implementation evaluation to the long-term effects on patient outcomes

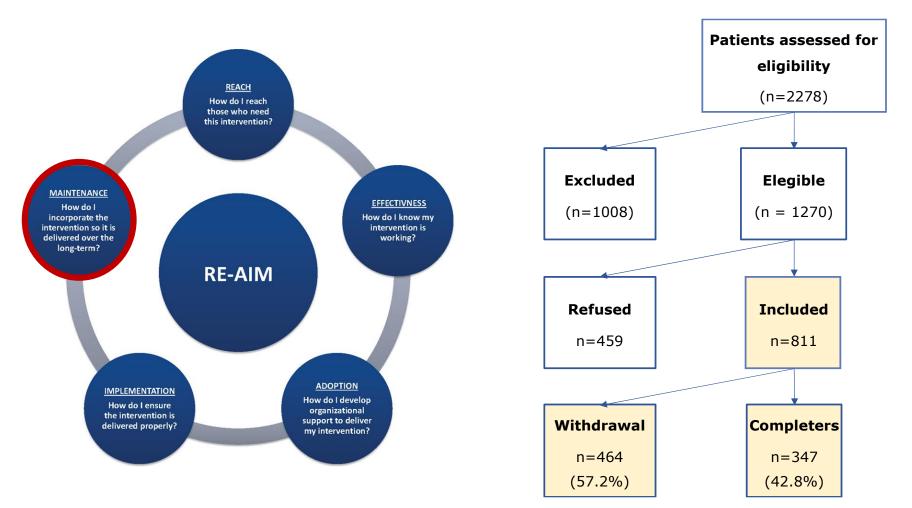




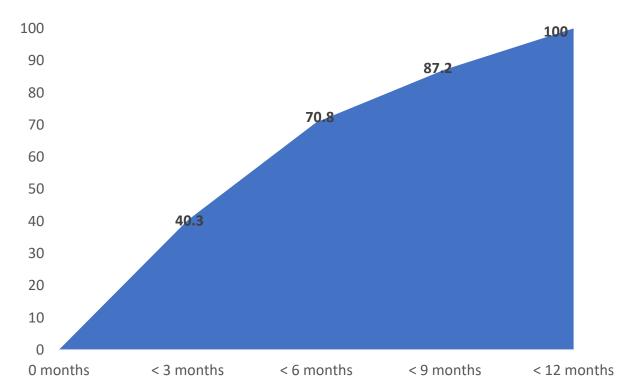
 To examine the long-term implementation of an intradialytic exercise program (IEP), using the RE-AIM framework (Reach, Effectiveness, Adoption, Implementation and Maintenance)

2. To explore the relationship between participation in long-term IEP and mortality risk, hospitalization risk and kidney transplantation eligibility

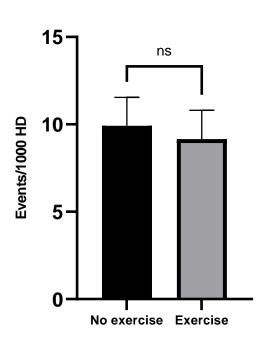



Reasons for non-eligibility

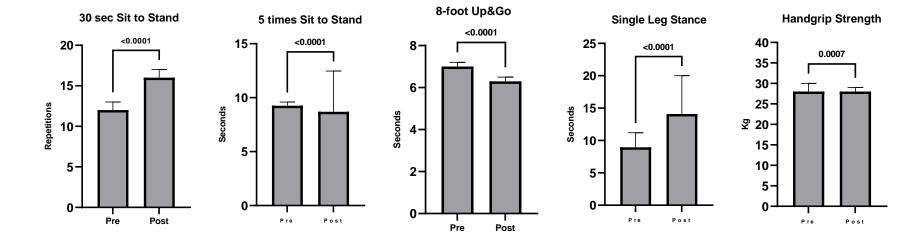
Reason	n	%
Vascular access in the lower limb	24	2.4
Risk of vascular access hematoma	39	3.9
Cardiovascular risk	352	34.9
Physical/cognitive incapacity	512	50.8
Other/unknown	81	8
Total	1008	100

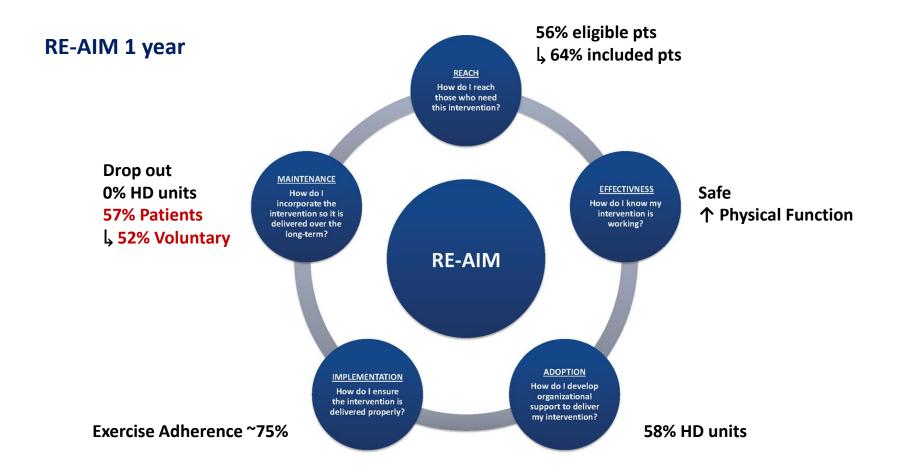

ncluded vs Ref	fused	N	Included	N	Refused	р
			(n=811)		(n=459)	
	Age (y)	811	61.3±14.6	459	64.4±14.6	<0.001 ¹
	Female, n (%)	811	303 (37.4)	459	162 (35.3)	0.463^{3}
Vascular access,	AVF		676 (83.4)		344 (74.9)	
	AVG	811	84 (10.4)	459	47 (10.2)	<0.001 ³
n (%)	CVC		51 (6.3)		68 (14.8)	
Treatment	Hemodiafiltration	807	760 (94.2)	432	402 (93.1)	0.436 ³
modality, n (%)	Hemodialysis		47 (5.8)		30 (6.9)	
	Dialysis vintage (months), median (IQR)	800	41 (64)	454	56 (94)	<0.001 ²
Comorbidities	Age-adjusted Charlson comorbidity index	811	5.3±2.4	454	5.9±2.5	<0.001 ¹
	Diabetes Mellitus, n (%)	811	221 (27.3)	459	114 (24.8)	0.348
	Cardiovascular disease, n (%)	811	630 (77.7)	459	392 (85.4)	0.001 ³
	No. of cardiovascular diseases, median (IQR)		1.6±1.5		2.0±1.8	<0.001 ¹
Body	Lean Tissue Index (Kg/m²)	784	13.3±3.4	427	12.9±3.3	0.0351
composition	Fat Tissue Index (Kg/m²)		12.2±5.6		12.1±5.6	0.663 ¹

Occurrence of voluntary withdrawal over time (%)



Safety Physical function


Safety


Cramps Headache Needle displacement/dislodgement Dyspnea Dysrhythmia Abdominal pain Chest pain Fatigue Hypertension **Hypotension** Nausea/vomiting Syncope Hypoglycemia (diabetics)

Total adverse events

Physical function

DOI: 10.1111/sdi.12814

EXERCISE AND PHYSICAL ACTIVITY IN DIALYSIS PATIENTS

WILEY

Guest Editors: Paul Bennett, Kenneth R. Wilund and Stephanie Thompson

Sustained exercise programs for hemodialysis patients: The characteristics of successful approaches in Portugal, Canada. Mexico, and Germany

João L. Viana¹ | Pedro Martins^{1,2} | Kristen Parker³ | Magdalena Madero⁴ Héctor Pérez Grovas⁴ | Kirsten Anding^{5,6} | Stefan Degenhardt⁶ | Iwona Gabrys³ | Shauna Raugust³ | Christina West³ | Theresa E. Cowan³ | Kenneth R. Wilund⁷

Correspondence

Dr Kenneth R, Wilund, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 906 S. Goodwin Avenue, Urbana, IL 61801. Email: kwilund@illinois.edu

Abstract

Despite having good intentions, hemodialysis (HD) clinics often fail to sustain exercise programs that they initiate. There are many reasons for this, including a lack of funding, inadequate training of the clinic staff, a lack of exercise professionals to manage the program or train the staff, and the many challenges inherent to exercising a patient population with multiple comorbid diseases. Despite these barriers, there are several outstanding examples of successful exercise programs in HD clinics throughout the world. The aim of this manuscript is to review the characteristics of four successfully sustained HD exercise programs in Portugal, Canada, Mexico, and Germany. We describe the unique approaches they have used to fund and manage their programs, the varied exercise prescriptions they incorporate, the unique challenges they face, and discuss the benefits they have seen. While the programs differ in many regards, a consistent theme is that they each have substantial and committed support from the entire clinic staff, including the nephrologists, administration, nurses, dietitians, and technicians. This suggests that exercise programs in HD clinics can be successfully implemented and sustained provided significant effort is made to foster a culture of physical activity throughout the clinic.

Practical tips for nephrologists

- Exercise programs in dialysis clinics are best implemented and sustained if managed by exercise professionals (physical therapist, physiotherapist, kinesiologist, exercise physiologist).
- Simple exercise programs can be successfully implemented by the existing clinic staff with sustained encouragement from the clinic managers and nephrologists.
- · Exercise programs at clinics should promote both intradialytic and out-of-clinic exercise.
- · Web-based and local community resources should be explored to develop and support hemodialysis exercise programs.

Areas for future research

- The cost effectiveness of employing exercise professionals in dialysis clinics.
- · Demonstrate whether exercise programs reduce hard outcomes such as hospitalizations and mortality in dialysis patients.
- The most efficacious approaches for improving patient reported outcomes, such as QOL, restless legs, fatigue, and cramping.

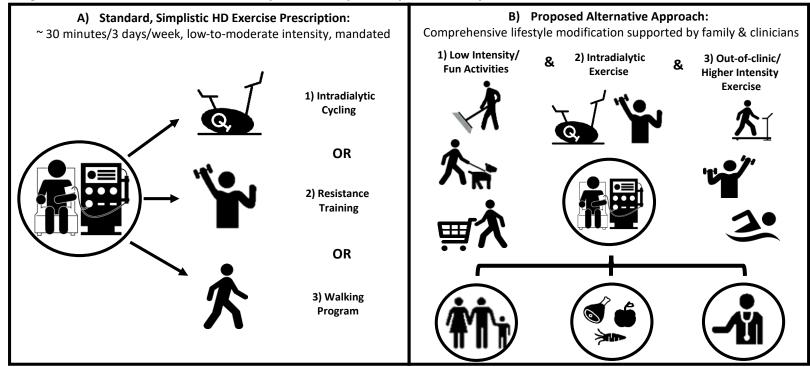
¹Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University Institute of Maia, ISMAI, Maia, Portugal

²Fresenius Medical Care, NephroCare, Lisbon, Portugal 3Alberta Health Services, Northern and

Southern Alberta Renal Programs, Calgary, Alberta, Canada

⁴Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico

⁵KfH Kidney Center, Bischofswerda, Germany


⁶German Association for Rehabilitative Sports in Chronic Kidney Disease (ReNi), Berlin, Germany

⁷Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois

A Critical Review of Exercise Training in Hemodialysis Patients

Personalized Activity Prescriptions are Needed

Figure 1: Standard vs Novel Exercise/Physical Activity Prescription for HD patients

